Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38603805

RESUMEN

Triazolium cyclodextrin click cluster (+CCC) is an ideal scaffold to specifically bind phosphoinositides (PIPs) via multivalent electrostatic interaction. A new enrichment material, triazolium cyclodextrin click cluster-magnetic agarose bead conjugate (+CCC-MAB), was synthesized and applied to the PIP enrichment of brain tissue. The enriched sample was analyzed using MALDI-TOF MS in negative ion mode without any derivatization. The PIP extract of brain tissue is known to contain abundant lipid interferences. By employing magnetic pull-down separation using +CCC-MAB, we effectively removed the weak-binding interferences in the PIP extract, thereby improving the signal-to-noise ratio (S/N) of the PIPs. Our +CCC-MAB-based PIP enrichment enabled us to analyze 16 PIP species in brain tissue. Six species with high S/N were assigned by MS/MS, while the remaining 10 species with low S/N were characterized by an empirical selection guide based on the biological relevance of PIPs. We conclude that +CCC-MAB-based PIP enrichment is a promising MALDI sample preparation method for specific PIP analysis in brain tissue.

2.
Ecotoxicol Environ Saf ; 262: 115119, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37327520

RESUMEN

Eicosanoids play important roles in inflammation, allergy, fever, and immune responses. In the eicosanoid pathway, cyclooxygenase (COX) catalyzes the conversion of arachidonic acid to prostaglandins and is a crucial target of nonsteroidal anti-inflammatory drugs (NSAIDs). Thus, toxicological studies on the eicosanoid pathway are important for drug discovery and the evaluation of adverse health outcomes due to environmental contaminants. However, experimental models are limited owing to concerns regarding ethical standards. Thus, new alternative models for evaluating toxic effects on the eicosanoid pathway must be developed. To this end, we adopted an invertebrate species, Daphnia magna, as an alternative model. D. magna was exposed to ibuprofen, a major NSAID, for 6 and 24 h. Transcription of eicosanoid-related genes (pla2, cox, pgd synthase, pgd2r2, ltb4dh, and lox) was analyzed by qPCR, eicosanoids (arachidonic acid, prostaglandin F2, dihydroxy prostaglandin F2, and 5-hydroxyeicosatetraenoate) were quantified by multiple reaction monitoring, and enzyme-linked immunosorbent assay was used to determine protein levels of arachidonic acid and prostaglandin E2 (PGE2). After 6 h of exposure, transcription of the pla2 and cox genes was downregulated. In addition, the whole-body level of arachidonic acid, an upstream of COX pathway, increased by over 1.5-fold. The levels of PGE2, a downstream of COX pathway, decreased after 24 h of exposure. According to our results, it is expected that the eicosanoid pathway might be conserved in D. magna, at least partially. This indicates the plausibility of D. magna as an alternative model for the screening of new drugs or chemical toxicity.

3.
Ocul Surf ; 29: 68-76, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37094778

RESUMEN

PURPOSE: To identify specific dry eye disease (DED) tear biomarker(s) using tear proteomic analysis, clinical parameters, and their correlations before and after DED treatment. METHODS: A prospective, double-blinded, national multicenter clinical study was performed using data from 80 DED patients. The patients were treated with 0.1% cyclosporine (CsA, n = 28), 0.05% CsA (n = 26), or 3% diquafosol (DQS, n = 26) eye drops, and tear proteome changes and clinical outcomes (tear break-up time [TBUT], corneal erosion [Cor-Er], conjunctival erosion [Conj-Er], and symptom assessment in dry eye [SANDE] scores) were observed at 4, 8, and 12 weeks. For all clinical parameters, correlation analysis was performed between the three drug conditions and the differentially expressed proteins (DEPs) from the proteomic analysis. RESULTS: AFM, ALCAM, CFB, H1-4, PON1, RAP1B, and RBP4 were identified in all treatment groups and were downregulated after treatment. All clinical parameters significantly improved at 12 weeks than at baseline (p-value <0.0001); however, their values were not significantly different among groups, except for Cor-Er (p-value = 0.007). Compared with the DQS group, Cor-Er score significantly improved after treatment with 0.1% and 0.05% CsA. The seven DEPs identified in all groups were not consistently correlated with the clinical parameters (p-value >0.05). CONCLUSIONS: Despite differences in drug concentration and action mechanisms, the improvement levels of TBUT, Cor-Er, and SANDE scores were clinically adequate. However, useful tear protein biomarkers, clinically acceptable biomarker combinations correlating with clinical parameters, and clinically acceptable levels of specificity and sensitivity were not identified.


Asunto(s)
Úlcera de la Córnea , Síndromes de Ojo Seco , Humanos , Proteómica , Estudios Prospectivos , Ciclosporina/uso terapéutico , Síndromes de Ojo Seco/diagnóstico , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Biomarcadores , Arildialquilfosfatasa/metabolismo , Arildialquilfosfatasa/uso terapéutico , Proteínas Plasmáticas de Unión al Retinol , Proteínas de Unión al GTP rap/metabolismo
5.
Toxins (Basel) ; 14(11)2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36356029

RESUMEN

The accumulation of protein-bound uremic toxins (PBUT) is associated with increased cardiovascular outcomes in patients on dialysis. However, the efficacy of PBUT removal for a medium-cutoff (MCO) membrane has not been clarified. This study was designed to assess the efficacy of PBUT clearance according to dialysis modalities. In this prospective and cross-over study, we enrolled 22 patients who received maintenance hemodiafiltration (HDF) thrice weekly from three dialysis centers. The dialysis removal of uremic toxins, including urea, beta 2-microglobulin (B2MG), lambda free light chain (λ-FLC), indoxyl sulfate (IS), and p-cresyl sulfate (pCS), was measured in the 22 patients on high-flux HD (HF-HD), post-dilution online HDF (post-OL-HDF), and MCO-HD over 3 weeks. The average convection volume in post-OL-HDF was 21.4 ± 1.8 L per session. The reduction rate (RR) of B2MG was higher in post-OL-HDF than in MCO-HD and HF-HD. The RR of λ-FLC was the highest in MCO-HD, followed by post-OL-HDF and HF-HD. The dialysate albumin was highest in MCO-HD, followed by post-OL-HDF and HF-HD. Post-dialysis plasma levels of IS and pCS were not statistically different across dialysis modalities. The total solute removal and dialytic clearance of IS and pCS were not significantly different. The clearance of IS and pCS did not differ between the HF-HD, post-OL-HDF, and MCO-HD groups.


Asunto(s)
Hemodiafiltración , Tóxinas Urémicas , Humanos , Estudios Prospectivos , Estudios Cruzados , Diálisis Renal , Indicán
6.
J Am Chem Soc ; 143(15): 5836-5844, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33834782

RESUMEN

The identification of each cell type is essential for understanding multicellular communities. Antibodies set as biomarkers have been the main toolbox for cell-type recognition, and chemical probes are emerging surrogates. Herein we report the first small-molecule probe, CDgB, to discriminate B lymphocytes from T lymphocytes, which was previously impossible without the help of antibodies. Through the study of the origin of cell specificity, we discovered an unexpected novel mechanism of membrane-oriented live-cell distinction. B cells maintain higher flexibility in their cell membrane than T cells and accumulate the lipid-like probe CDgB more preferably. Because B and T cells share common ancestors, we tracked the cell membrane changes of the progenitor cells and disclosed the dynamic reorganization of the membrane properties over the lymphocyte differentiation progress. This study casts an orthogonal strategy for the small-molecule cell identifier and enriches the toolbox for live-cell distinction from complex cell communities.


Asunto(s)
Linfocitos B/citología , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Linfocitos T/citología , Animales , Linfocitos B/química , Linfocitos B/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Membrana Celular/química , Citometría de Flujo , Lipidómica , Ratones , Linfocitos T/química , Linfocitos T/inmunología
7.
Cryobiology ; 99: 140-148, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33242477

RESUMEN

Cryopreserved oocytes are inevitably exposed to cold stress, which negatively affects the cellular aspects of the oocytes. Lipidomic analysis of the oocytes reveals quantitative changes in lipid classes under conditions of cold stress, leading to potential freezing-vulnerability. We had previously shown that specific phospholipids are significantly downregulated in vitrified-warmed mouse oocytes compared to those in fresh oocytes. In this study, we examined whether supplementation of polyethylene glycol 8000 (PEG 8000) during vitrification influences the lipidome of the oocytes. We used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to study the alteration in the lipidome in three groups of mouse oocytes: fresh, vitrified-warmed, and vitrified with PEG 8000-warmed during vitrification. In these groups, we targeted to analyze 21 lipid classes. We profiled 132 lipid species in the oocytes and statistical analyses revealed lipid classes that were up- or downregulated in these groups. Overall, our data revealed that several classes of lipids were affected during vitrification, and that oocytes vitrified with PEG 8000 to some extent alleviated the levels of changes in phospholipid and sphingolipid contents during vitrification. These results suggest that phospholipids and sphingolipids are influenced by PEG 8000 during vitrification and that PEG 8000 can be considered as a potential candidate for preserving membrane integrity during oocyte cryopreservation.


Asunto(s)
Lipidómica , Vitrificación , Animales , Cromatografía Liquida , Criopreservación/métodos , Suplementos Dietéticos , Ratones , Oocitos , Polietilenglicoles , Espectrometría de Masas en Tándem
8.
Anim Cells Syst (Seoul) ; 24(1): 1-7, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158610

RESUMEN

Current parallel sequencing technologies generate biological sequence data explosively and enable omics studies that analyze collective biological features. The more omics data that is accumulated, the more they show the regulatory complexity of biological phenotypes. This high order regulatory complexity needs systems-level approaches, including network analysis, to understand it. There are a series of layers in the omics field that are closely connected to each other as described in 'central dogma.' We, therefore, have to not only interpret each single omics layer but also to integrate multi-omics layers systematically to get a full picture of the regulatory landscape of the biological phenotype. Especially, individual omics data has their own adequate biological network to apply systematic analysis appropriately. A full regulatory landscape can only be obtained when multi-omics data are incorporated within adequate networks. In this review, we discuss how to interpret and integrate multi-omics data systematically using recent studies. We also propose an analysis framework for systematic multi-omics interpretation by centering on the transcriptional core regulator, which can be incorporated in all omics networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...